太阳集团tyc5997

科学研究

智慧环境与低碳技术团队

2022-07-24 16:57:00 来源:太阳集团tyc5997 点击:

智慧环境与低碳技术团队

 

团队名称:智慧环境与低碳技术团队

 

团队负责人:黄明智 教授

 

团队成员

1)教授/研究员:黄明智

2)副教授/副研究员:易晓辉

(3)讲师/助理研究员:陈振国

3)博士后:李小勇、张超

 

团队简介

智慧环境与低碳技术团队现有1名教授、2名副研究员、1名博士后,团队成员包括青年长江、广东省杰青和广东特支计划科技创新青年拔尖人才。团队长期从事智能低碳污染防治与数字化技术研究,在废水低碳智能处理与资源化利用技术智慧水务与系统仿真环境大数据应用与数字化技术等方面开展了系列探索性研究,取得了一批创新性的理论与应用成果。团队先后承担及参与了国家重点研发计划项目、广东省自然科学基金、广东省应用型科技研发专项和广州市科技研究专项重点项目等科研项目20余项,相关研究成果发表SCI论文150余篇,获授权发明专利30余项,授权计算机软件版权40多项,获国家科学技术进步二等奖、广东省科学技术一等奖和二等奖、中国专利优秀奖、广东省专利优秀奖、广东高校成果转化大赛等多项国家、省部级科技奖励。团队致力于理论与实践相结合,与广州环保集团深圳水务集团、龙光集团、广船环保等行业龙头企业建立了良好的产学研合作关系,研究成果已在全国十几个省()100多家企业实现工程化应用,取得了良好的社会效益与环境效益。

 

 

研究方向

(1)环境大数据与数字化分析:污染物软测量智能预警预测技术污染物全光谱智能监测技术基于机器视觉识别污染物防治技术。

(2)废水低碳智能处理技术:污染防治过程提质降耗智能优化控制、智能高效生物处理技术、废水处理全流程智能协同减碳增效技术、新污染物高级氧化技术与智能化。

(3)水环境智能治理与系统模拟:城镇黑臭水体生态修复;流域污染控制及修复;嵌入式河道数字化治理智能监控

代表性成果

1)重要科研项目

[1] 国家自然科学基金面上项目,新烟碱类农药在城市水循环关键环节中的污染特征及降解转化机理2023.01-2026.1253万,黄明智,在研

[2] 国家自然科学基金面上项目,河口潮间带沉积物中新烟碱类杀虫剂微生物降解及其与氮转化互作效应,2023.01-2026.1253万,易晓辉,在研

[3] 国家重点研发计划项目子课题有机复合污染物自然衰减的空间演变机制及分级研究2023.01-2026.1280万,易晓辉,在研

[4] 华师-龙光奇岭联合实验室,湖泊水体综合治理技术联合实验室,103万,在研

[5] 国家自然科学基金面上项目,典型新烟碱类农药在水/沉积物体系中迁移特征及其微生物降解机制,2020.01-2023.1261万,黄明智,在研

[6] 佛山市创新团队,高危险品在线监控与应急处理系统,2020.01-2024.12640万,黄明智,在研

[7]福建省对外合作项目,污水处理智能耦合控制系统构建及节能优化控制,2020.01-2023.12100万,黄明智,在研

[8] 国家自然科学基金青年基金,甲烷化反硝化耦合体系中氟喹诺酮类抗生素降解机理研究,2020.01-2021.1225万,易晓辉,在研

[9] 广州市科学研究专项重点项目,集成式智能化高效日用化工废水深度处理与回用技术研发2020.04-2023.03100万,黄明智,在研

[10] 广东省自然科学杰出青年基金,珠江流域水环境中PAEsPOPs污染物的迁移转化规律研究,2016.01-2020.12100万,黄明智,结题

 

2)代表性论文

[1]  Zhang, C., Dionysiou, D., Wen, R., Zhang, H., Wan, X., Wang, X., Li, F., Li, Y., Zhou, Q., Ying, G.G., Huang, M.Z., 2022. Inference of emission history of neonicotinoid pesticides from marine sediment cores impacted by riverine runoff of a developed agricultural region: The Pearl River Basin, China. Water Res. 218, 118475. doi: 10.1016/j.watres.2022.118475.

[2] Zhang, C., Li, X.Y., Li, F., Li, G.G., Niu, G.Q., Chen, H.Y., Ying, G.G., Huang, M.Z., 2022. Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model. J. Hazard. Mater. 423, 127029. doi: 10.1016/j.jhazmat.2021.127029.

[3] Zhang, C., Dionysiou, D.D., Li, F., Zhang, H., Fang, X., Fu, H., He, J.Y,. Chen, L., Ying, G.G., Huang, M.Z., 2022. Designing NAZO@BC electrodes for enhanced elimination of hydrophilic organic pollutants in heterogeneous electro-Fenton system: Insights into the detoxification mediated by 1O2 and • OH. J. Hazard. Mater. 431, 128598. doi: 10.1016/j.jhazmat.2022.128598.

[4] Chao Zhang, Xiaohui Yi, Lingtian Xie, Hongbin Liu, Di Tian, BoYan, Dongya Li, Huanxuan Li, Mingzhi Huang, Guang-GuoYing. Contamination of drinking water by neonicotinoid insecticides in China: Human exposure potential through drinking water consumption and percutaneous penetration. Environment International, 2021, 156: 106650.

[5] Jinhong Dai, Mingzhi Huang, Kwan San Hui, Denis Y.W. Yu, DongliangYan, Kwun Nam Hui, Swee Ching Tan, Liguo Zhang, Fuming Chen. Redox flow desalination based on the temperature difference as a driving force .Chemical Engineering Journal, 2021, 416:  127716.

[6] HuanxuanLi, Yuzhe Yao, Jiale Chen, Chunhui Wang, Jingang Huang, Jia Du, Shaodan Xu, Junhong Tang, Hongting Zhao, Mingzhi Huang. Heterogeneous activation of peroxymonosulfate by bimetallic MOFs for efficient degradation of phenanthrene: Synthesis, performance, kinetics, and mechanisms. Separation and Purification Technology,2021, 259: 118217.

[7] Chao Zhang, Feng Li, Huike Zhang, Rubing Wen, Xiaohui Yi, Yujie Yang, Junyi He, Guang-Guo Ying, Mingzhi Huang. Crucial roles of 3D-MoO2-PBC cocatalytic electrodes in the enhanced degradation of imidacloprid in heterogeneous electro–Fenton system: Degradation mechanisms and toxicity attenuation. Journal of Hazardous Materials, 2021, 420: 126556.

[8] Hui S, Guan ZY, Chen LY, Xu HM, Xia DS, Huang MZ, Li DY. Role of curvature in a carbon electronic structure under spatial confinement: conversion of nonradicals to radicals. Carbon, 2021, 180:22-30.

[9] Yi XH, Wu RR, Han DH, Li Y, Li XY, Niu GQ, Huang MZ, Ying GG (2020) Adaptation of methane recovery, sludge characteristics and evolution of microbial community response to elevated nitrate under the methanogenic condition. Journal of Cleaner Production, 2020.120713.

[10] Hongbin Liu, Chong Yang, Mingzhi Huang, ChangKyoo Yoo. Soft sensor modeling of industrial process data using kernel latent variables-based relevance vector machine. Applied Soft Computing, 2020:106149.

[11] Zhang C, Li F, Wen R, Zhang H, Elumalai P, Zheng Q, Chen H, Yang Y, Huang MZ, Ying GG. Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater. Water Research, 2020, 182: 115975. 

[12] Zhang C, Yi X.H, Chen C., Tian D, Liu H.B, Xie L.T, Zhu X.P, Huang M.Z, Ying G.G. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. Environment International, 2020, 139: 105719.

[13] Zuo S, Guan Z, Xia DS, FanYangF, Xu HM, Huang MZ, Li DY. Polarized heterogeneous CuO-CN for peroxymonosulfate nonradical activation: An enhancement mechanism of mediated electron transfer. Chemical Engineering Journal, 2020(4):127619.

[14] Yi X, Wu R, Han D, Li Y, Li XY, Niu GQ, Huang MZ, Ying GG. Adaptation of methane recovery, sludge characteristics and evolution of microbial community response to elevated nitrate under the methanogenic condition. Journal of Cleaner Production, 2020:120713.

[15] Guoqiang Niu , Xiaohui Yi , Chen Chen, Xiaoyong Li, Donghui Han, Bo Yan, Mingzhi Huang, Guangguo Ying. A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment.  J. Clean. Prod., 2020, 265: 121787.

 

[16] Wang X, Yang C, Xiong X, Chen GL, Huang MZ, Wang JH, Liu Y, Liu ML, Huang K A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials,2019,16, 344-353

[17] Liu H, Yang C, Huang MZ, Wang D, Yoo C (2018) Modeling of subway indoor air quality using Gaussian process regression. Journal of Hazardous Materials, 2018, 17, 266-273.

[18] Dong LP, Huang Z, Ruan JJ, Hu J, Huang J, Huang MZ, Kong S, Zhang T (2017) Pyrolysis Routine of Organics and Parameter Optimization of Vacuum Gasification for Recovering Hazardous Waste Toner. ACS Sustainable Chemistry & Engineering 5 (11), 10038–10045.

[19] Zheng J, Ruan JJ, Dong L, Zhang T, Huang MZ, Xu ZM (2017) Hollow aluminum particle in eddy current separation of recovering waste toner cartridges. ACS Sustainable Chemistry & Engineering. 5, 161-167.

[20] Zhang T, Xue J, Gao C Qiu RL, Li Y, Li X, Huang MZ, Kannan K (2016) Urinary Concentrations of Bisphenols and their Association with Biomarkers of Oxidative Stress in People Living Near E-waste Recycling Facilities in China. Environmental Science & Technology 50 (7), 4045–4053

 

3)授权发明专利或成果转化、成果应用

[1] 一种城市河涌水体典型有机污染物智能检测方法,ZL201910942058.0

[2] 一种基于深度学习的污水处理厂进水流量预测方法,ZL202110347452

[3] 一种基于PCA-LSTM网络的废水处理智能监控方法,ZL201910942037

[4] 一种钙化厌氧颗粒污泥二次成核再利用方法及系统,ZL201811130287.4

[5] 出水含氮物智能在线监测方法和系统,ZL202111091217.4

[6] 基于残差网络和注意力机制的污水处理软测量方法及系统,ZL202111091225.9

[7] 一种基于1T相纳米二硫化钼处理废水的方法及该1T相纳米二硫化钼的制备方法,ZL202110974349.5

[8] 化学需氧量智能预测方法和系统,ZL202110980539.8

[9] 基于量子遗传算法的污水处理过程节能优化控制方法,ZL201510907217.5.

[10] Method and system for wastewater treatment based on dissolved oxygen control by fuzzy neural network (美国发明专利),US009747544B2

[11] 一种利用双催化剂非均相活化过硫酸盐处理有机废水的方法, ZL2014101171765.

[12] 一种亚铁盐活化过硫酸盐或单过氧硫酸氢盐高级氧化深度处理造纸废水的方法, ZL 2014100525194.

[13] 一种壳核型纳米铁复合颗粒及制备方法和应用, ZL2013107150787.

[14] 一种提高废纸细小纤维强度的两性聚丙烯酰胺乳液的制备方法, ZL2013107150787.

[15] 一种利用多相催化剂高效活化过硫酸盐处理有机废水的方法, ZL201310380092.6.

[16] 一种基于氨基酸末端羧基的漆酶改性方法及应用, ZL201310380060.6.

[17] 一种多元混配络合亚铁活化过硫酸盐或单过氧硫酸氢盐深度氧化处理废水的方法,ZL 2013103800748.

[18] 一种多元混配络合亚铁活化过硫酸盐或单过氧硫酸氢盐深度氧化处理废水的方法,ZL201310380074.8

[19] 一种基于氨基酸末端氨基的漆酶改性方法及应用, ZL201310380070.X.

[20] 一种双向流内循环式PS高级氧化反应器及污水处理方法, ZL20131015284.9

[21] 一种处理废水的两相两阶段厌氧生物反应器, ZL201210092928.8.

[22] 一种络合的亚铁活化过硫酸盐氧化水处理方法, ZL201110175305.2.

 

4)授权计算机软件版权

[1] 基于CNN-LSTM融合网络模型的污水处理厂出水氨氮智能监测系统, 2021SR1559701

[2]基于图卷积网络的污水处理厂出水总氮智能监测系统, 2021SR1532949

[3] 基于PCA-CNN网络的城市河涌水体典型有机污染物软测量系统,2019SR1049442

[4]  基于PCA-LSTN耦合模型的废水处理关键水质参数软测量系统,2019SR1049460

[5] 基于卷积神经网络的废水处理水质软测量及图形控制界面系统,2019SR1049434

[6] 基于GA-DBN的造纸废水处理出水水质动态变化预测系统,2019SR0791525

[7] 基于粒子群算法优化的BP神经网络废水处理水质软测量系统,2019SR0786913

[8] 基于GA-FWNN的污水厌氧处理产气量监控系统,2018SR356501.

[9] 基于小波-GABP—模糊马尔可夫链的废水处理进水BOD时序预测系统,2018SR356512.

[10] 基于参数优化的动态模糊神经网络废水处理回流比控制系统,2018SR663843.

[11] 基于GA-NFS的废水处理营养盐动态变化软测量预测系统,2018SR664206.

[12] 废水厌氧生物处理BP-NSGA智能优化系统, 2013SR15446.

[13] 基于量子遗传算法的污水处理过程最优控制系统,2015R153701.

[14] 一种厌氧废水处理系统出水挥发性脂肪酸的软测量方法,2015102800824.

[15] 一种基于BSM1的污水处理自适应模糊神经网络仿真监控系统, 2014SR010905.

[16] PCA-自适应模糊神经网络废水水质监控系统V1.0, 2011R11S019739.

[17] 基于粒子群算法优化的BP神经网络嵌入式污水水质软测量系统, 2011SR028796

[18] 基于BP神经网络的嵌入式造纸废水处理智能控制系统, 2008SR32104.

 

5)科技奖项

[1] 国家科技进步二等奖,《废纸造纸废水资源化利用关键技术研发与应用》,中华人民共和国国务院,黄明智,2009

[2] 广东省科技进步一等奖,《废纸造纸废水封闭循环应用技术》,广东省科技厅,黄明智,2007

[3] 广东省科技进步二等奖,《造纸过程中废纸纤维品质提升的关键技术研发与应用》,广东省科技厅,黄明智,2014

[4] 广东省专利优秀奖,《一种处理废水的两相两阶段厌氧生物反应器》,广东省知识产权局,黄明智,2017

[5] 广东省生态环境青年科技奖黄明智2019

[6]中国专利优秀奖,《一种处理废水的两相两阶段厌氧生物反应器》,国家知识产权局,黄明智,2019

[7] 中国环境科学学会青年科学家奖优秀奖,2020

[8] 广东高校成果路演大赛总决赛初创组三等奖,水污染控制技术与智能装备研发与应用黄明智,2020

[9]中国专利优秀奖,《一种双向流内循环式PS高级氧化反应器及污水处理方法》,国家知识产权局,黄明智,2021

[10] 教育部长江学者奖励计划青年长江学者,2020